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Extended Hartree-Fock (EHF) Theory in Chemical 
Reactions 

II. Symmetry Properties of the EHF Wavefunctions Constructed by the Magnetically 
Ordered General Spin Orbitals 

K. Yamaguchi*, Y. Yoshioka, T. Takatsuka and T. Fueno 
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The roles of orbital, spin and permutation symmetries in the extended Hartree- 
Fock (EHF) wavefunction are investigated in relation to the applications of 
group theory to chemical reactions. The utility of the magnetically ordered set 
for an extended HF calculation is pointed out. The relative stabilities among 
linear Htickel and M6bius three-center three-electron (3,3) systems are investi- 
gated by the generalized Hartree-Fock (GHF) and EHF methods in order to 
confirm the reliability of the valence-bond (VB) selection rule for free radical 
reactions. 
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1. Introduction 

The correlation and spin correlation effects play an essential role to determine the 
chemical behaviour of reacting systems, i.e., the electronic mechanisms of chemical 
reactions. Previously it has been shown that the orbital and spin degeneracy 
problems are very important to elucidate the free radical reaction mechanisms on 
the basis of the Heisenberg models [1] and the Hartree-Fock methods [2, 3]. 
Although the Hartree-Fock method provides useful information concerning the 
electronic structures of reacting molecules, it has intrinsic deficiencies such as 
symmetry-breaking properties. Then it seems important and interesting to investi- 
gate the electronic structures of reacting molecules by using the symmetry-adapted 
wavefunctions such as the extended Hartree-Fock (EHF) wavefunction [4]. 

The spin-free Hamiltonian ~(fSF commutes with the symmetry elements of time- 
reversion (T), permutation (SN) spin rotation (SR) and point group (P,): 

[~SF, •] =0, ~ e T, SN, SR, P. (1) 
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Since the wavefunction of a system is not a physical observable, it is therefore not 
necessarily required to be invariant under the symmetry operations of that system. 
But the symmetry of the system imposes some restrictions on the behaviour of the 
wavefunction. Thus the group theories treating the orbital (P,), spin (magnetic) 
(T x SR) and permutation (SN) symmetries are very important to derive the group- 
theoretical selection rules of chemical reactions. In the previous paper [4] which is 
referred to as the Part I of this series, we have briefly discussed the utility of the 
group theoretical approach in the case of the equilateral H 3 radical. Thus the above 
success suggests the utility of the extended Hartree-Fock formalism by use of the 
magnetically ordered general spin orbitals (GSO). 

Generally speaking, there are spin-free approach [5] and space-spin formalism 
which involve the generalized Hartree-Fock (GHF) approximation [2, 3, 6-8]. 
The permutation (SN) and magnetic (Tx SR) symmetries are closely related to the 
former and latter approaches, respectively. The former approach is familiar in 
relation to the simple valence-bond (VB) approach [4, 5] for molecules. The latter 
method is used to elucidate the magnetism of solids [9]. However these approaches 
are independently developed in the fields of molecular and solid-state physics, 
respectively. Thus a theoretical approach to combine the spin-free and spin- 
dependent formalisms is of importance and interest. The approach can be applied 
to elucidate the electronic mechanisms of chemical reactions. For example, the 
electronic mechanisms of ion and radical reactions are closely related to the ionic 
and antiferromagnetic phases of solids, respectively [9]. Thus the primary interest 
of this series of papers lies in the theoretical investigation of the interrelationships 
between the electronic mechanisms of chemical reactions and electronic correla- 
tions on the basis of the symmetry-adapted, i.e., extended Hartree-Fock, wave- 
functions. 

In the present paper, as a first step to the purpose, we wish to investigate generally 
the behaviour of the wavefunctions constructed by the generalized Hartree-Fock 
solutions by using the permutation operator. Simple EHF wavefunctions by use of 
the magnetically ordered GSO's will be constructed to elucidate the electronic 
structures of linear, Hfickel and M6bius three-center three-electron (3,3) systems. 

2. Permutation Symmetry and Spin-Symmetry Adapted Wavefunctions 

The wavefunction of a N-electron system is expressed by the natural orbital (NO) 
set {~i } which belongs to the irreducible representation of the point group of the 
system. In the present paper we construct the wavefunctions in the HF type 
orbital approximation. The one-electron orbitals are generally expressed by 
orthonormalized two-component spinors [6-9]: 

(2) 

I r 
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The orbital components are given by the natural orbitals as 

OtA= Z aliOi, 02A = Z a2i 0 i 
i i 

(3) 

The Hartree product o fN orbitals is given by 

~bn=01 0Z 03"" .ON (4) 

Since the above wavefunction has not the pure S z component, the projection 
operator ~f~ is necessary as 

~ = F[ (5r - k) / ( M -  k) (5) 
k+_M 

where 

S'~z= ~;~rz(/) ,  a , ( i )=  (~ _ ~ )  (6) 

Then the g z  projected wavefunction is given by 

e u t M ) =  2 eb, Og(M) (7) 
l 

where 

r F~ 4~ (r r (8) 
B 

O, (M) = t/(i) t /U). . ,  r/(k) (t/= 17 + or t/_ ) (9) 

Each 45 z involves natural orbital products arranged in ascending numerical order. 
The above .9~z projected wavefunction however involves the wavefunctions with 
various ,9 ~2 components. Then the projection with .9 ~2 is necessary to obtain the 
pure spin symmetry. From the Pauli principle, the allowed partition of N electrons 
are given by 

[~] = [2,,  1N-2 , ]  (10) 

The spin quantum number to be associated with the partition ~ is 

S = N/2 -p (11) 

The projection operator to obtain the total spin components S is given by the 
structure basis [5, 10, 11] or the matric basis [12-19]. From the latter it is given by 

~ 2 = ~  C i ~ = ~  i Ci~e,~e,~ (12) 

wheref  ~ is the dimension of the irreducible representation matrix of the partition c~. 
The operators e~j and e~ act on the spin and space parts, respectively, and select 
the pure symmetry components. The coefficients C~ are related with the so-called 
spin degeneracy problem. The spin symmetry adapted wavefunction therefore is 
given by 

(~H (S, M) = ~spin (J~H = Z Oj  ~)j (S,  M )  (13) 
) 
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where ~j(S, M) is given by the Slater determinants and the spin symmetry pro- 
jection operator is given by 

~svin= ~ ~ (14) 

The coefficients D; are the functions ofa~j and C~ which are determined by the SCF 
procedures [13-15, 19]. 

3. Time-Reversal Symmetry and Spin Moment Inversion 

The time-reversal operation ~- is defined by 

~-= ]-[ [iay(j)] Y (15) 
J 

where Y is the operation of the complex conjugation. In order to satisfy Wigner's 
theorem, if ~E is an eigenfunction of ~sv then Y-~b E is also an eigenfunction of 
~Vt~SF which has the same energy E as 4~ E : 

; ~E* 3f~ ~E dz : f (3-~E)* ~sv (Y~E) d'c = E (16) 

Then the projected HF wavefunction should have the above property. 

The projection operator ~r of the total spin component S commutes with the 
time-reversal operation: 

[ ~ 2 , J - ]  =0 (17) 

The projection operator ~ z ,  on the other hand, does not commute with the Y- 
operation since it involves the G operator. Generally speaking, the wavefunction 
for the spin-free Hamiltonian thus cannot be the simultaneous eigenstate of 50 z 
and 3-- operators. In the present spin-symmetry adapted formulation, the G 
operator transforms as 

Thus the inversion of the spin moment occurs under the time-reversion. 

The projection operator N ~  is also converted as 

r  J - - ~ =  I~[ ( -  ~ z - k ) / ( M - k )  (19) 
k:fM 

where N ~  extracts the - M component of ~z. The orbitals transform as 

( 0 ~ a )  (20) i ~ r S ~  a = - ~ ' ~ n -  + q'~An + = _ ~ , ~ /  

Since the down spin components should be added up instead of up spin parts 
(vice versa) to obtain the - M  value, the projected HF wavefunction therefore 
transforms as 

~--rb n (S~ M) = ~-r162 cb. = ~r162 3--- ~ J-q~n = ( - 1 )N/2 + M~fi (S ,  - -  M) 
(21) 
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The time-reversal operation J -  thus causes the spin inversion. However the energy 
E remains invariant as shown in Eqs. (16) and (21), satisfying Wigner's theorem. 
Thus the time-reversal symmetry operation itself is independent of the energy 
calculation by the spin-symmetry adapted wavefunction. 

The time-reversal symmetry is closely related to the stability of the Hartree-Fock 
solutions [2, 3, 7, 20-22] and the so-called complex molecular orbital method 
[23-25]. The spatial parts of spinors in Eq. (2) are decomposed into real and 
complex parts as 

Oa=(tp;A + itPi'A)~ + + (O;A + iO;A)tl_ (22) 

Then the spin symmetry adapted wavefunctions are also decomposed into two 
parts: 

�9 n (S, M) = e n (S, M)R + iq~ n (S, M) c (23) 

The real and complex parts can be extracted by using the time-reversal operator as 

~H(S, M)=~t+e~n(S ,  M) 

,[1/2 [~. (S,  M)R+(--  1)N/2 +M'/'H(S, M)R] 
= [//2 ['/ '. (S, M) c + ( -  1) N/2 + M'/' H (S, M)c] (24) 

where 

-~ti• ~- 1/2(1 _+.Y- ) (25) 

The transformation properties of the above operators are as follows: 
~ -  • + + )2  _ 4- ~7- 2 J ~time = ---Ntvme, (~dm~ --~tim~, J = 1 for N =  2m (even) 

(26) 
"~r ~ t i m e  = + ~ t ] -me ,  ( ~ t ] - m e )  ~;& ~ t i m e ,  "-~ - -  - -  I f o r  N = 2 m  + 1 (odd) 

Then the wavefunctions can be constructed to be the simultaneous eigenstates of 
Y- and N ~  in the case of even electron systems with M = 0 where Nt~-m~ and ~ti-m~ 
are the projection operators which extract the time-reversal symmetric and anti- 
symmetric components, respectively. However such procedures do not exist in the 
case of odd-electron systems (Kramers degeneracy). 

The real and complex components can also be extracted by means of the projection 
operators as 

~,+erq~H(S, M)=q~n(S, M)R 
~alter ~H (S, M) = iq~n (S, M) c (27) 

• where ~alt~r are defined by the complex conjugation operator ~ as 

~a l+e r  = 1/2(1 +JC)  (28) 

These projection operators are closely related with the alternancy symmetry 
breaking [26] and parity mixing [23-25] procedures which lead to the complex 
molecular orbitals. Although many variational parameters can be introduced by 
using the complex MO's, a general study of the above symmetry breaking modes is 
very difficult in the case of the extended HF method [23-25, 26, 27]. 
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In the case of the HF theory, the complex charge-density wave (CCDW) solutions 
for even-electron systems are the typical complex molecular orbitals. The CCDW 
solutions arise from the singlet instability breaking the time-reversal symmetry and 
have the closed-shell forms, i.e., N/2 pair orbitals, as 

r =Carl+ (A = 1 , . . . ,  N/Z), I~a~=l/14 ~ (29) 

The utility of the CCDW-type solutions for the extended HF calculations has been 
shown in some papers [23-25, 28]. 

4. Local Spin (Magnetic) Symmetry and Magnetic Orderings in Spinors 

There are three different symmetry operations for orthogonal spinors' 1) time- 
reversion (T), 2) spin rotation (SR) and 3) spatial symmetry (P,) operations. The 
role of the time-reversal operation was already discussed in Sect. 3. The spin 
rotation operation u(e, O) around the axis e by the angle O are expressed by the 
Pauli matrices a = ( a  x, ~ry, az) which are the generators of the so-called SU(2) 
group : 

a(e, O) =exp ( -  0/2 a-e) (30) 

=cos 0 / 2 - i  (a.e) sin 0/2 

The spatial symmetry operations are familiar. Then any orbital set belongs to a 
subgroup of the direct product group, i.e., the magnetic double point group 
M, = T x SR x P, [4, 9, 29]. The most symmetry breaking orbitals set involves no 
symmetry element of the group ii,/,. The restricted Hartree-Fock (RHF) orbital 
set of the ground singlet state, on the other hand, has all the elements of M,. There 
are various levels of the symmetry-breaking orbital sets as well as the above specific 
cases. In the case of the HF theory, the forms of the ground HF solutions are 
determined by the stability conditions [2, 3]. 

The single Slater determinant built from the spinors gives the second-order reduced 
density matrices for parallel and antiparallel spin pairs as 

PY2(1, 2)=�89 2)3 +�89 2)] (31) 

P~(1, 2) =�89 SI(1)Sz(2)] - �89 2) + S~(1, 2)] (32) 

where P1 is the density and S,,(m=x, y, z) is the spin density matrix of the m- 
direction. The pair function PI  2 of the parallel spin disappears for 2 ~ 1, indi- 
cating the so-called Fermi-hole. The pair function P~ of the opposite spin, on the 
other hand, is reduced for 2 -+ 1 to 

P~(1) = 1/2 [P~ (1) - Z  S~(1)] (33) 
m 

Thus the spin densities are closely related to the decrease of pair function of 
opposite spin in the case of the HF solution, indicating the healing of the Coulomb 
repulsion. The total pair function is given by 

2 P2(1, 2)=PzY(1, 2)+P[(1, 2)=Pl(1)P~(2)-  1/2[P?(1, 2)+~, S~(1, 2)] (34) 
m 
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Thus the off-diagonal parts of the spin density matrices are related to the exchange 
correlations. Therefore the structures of pair functions can be characterized by 
the density and spin density matrices in the HF scheme. 

The characteristic of the exchange phenomena can be directly extracted from the 
scalar product of two spins 5 ~ (1). 5 e (2) because of the remarkable relation due to 
Dirac: 

Y(1) .5~ 1/412NI2 - 1] (35) 

where ~ 2  is the permutation operator of two spins. Then the so-called spin 
correlation function K 2 [2, 9] can be introduced as 

Kz(rl, r2)= f fS~(1) ' J (2)  P2(rl, r2, /1, r'2) dStdS2 
, ) d  (36) 

=�88 F, S,~(rl )Sm(r2)+ ~ F, S~(rl , r2)-3e?(rx,  r2) 

where P2 is the second-order density matrix. 
Thus the spin correlation function is isotopic and involves the product of the 
diagonal parts of spin density matrix which is related to the spin exchange pheno- 
mena. The classical (K~) and quantum (K~) parts of the K2-function are defined by 

K~(rl, r2)=�88 ~ S~(ra)Sm(r2) 
m 

K~(rx, r2)= ~ ~, S~(rx, rz) 3p?(rl ' r2 ) (37) 
m 

The classical precession picture of spin correlation can be directly expressed by 
the K~-function. For example, an antiparallel spin arrangement can be regarded as 
a pictorial expression of the singlet type spin correlation. The quantum part, on the 
other hand, comes from the quantum mechanical exchange phenomena of elect- 
rons and cannot be explained classically. 

The above results indicate the importance of the spin-symmetry breaking for the 
incorporation of correlation effects [2, 3, 26] in the case of the HF approximation. 
The familiar DODS solution has only the/-component of the spin density. The 
helical SDW solution, on the other hand, has two components of spin density. 
These conditions on the spin density are satisfied by the orbital pairings in the HF 
approximation [7]. Since the spin rotations are expressed by the Pauli matrices, the 
orbital set must be invariant under the a i operation in order to retain the axial 
symmetry for the axis i. The S x modulate SDW (ASDW) [2, 3, 7] solution 
(S~ = Sy = 0) is closely related to the spin-flipping (SF) instability of the restricted 
HF solution: 

~rx0~=~b ~ or 0~ ( A = l , 2 , . . p )  (38) 

axOA =Oa ( A = 2 p +  1, . .) 

The planar symmetry operation, on the other hand, is expressed by the ~r rotation 
around the/-axis followed by the time reversion t=  iayJ~r ~ 

~'i=t~i (i= x, z) (39) 
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Then the HSDW orbitals with a' z symmetry, i.e., s~ -- 0, transform as 
/ + + T- a ~ b ~ = 0 f f  or ~b A ( A = l , 2 , . . . p )  (40) 

~'zOA =~bA (A =2p+  1 . . . .  ) 

The stability analyses [2, 3, 7] indicate that the singlet or spin-unflipping instability 
does not occur in the ground HF solution in most cases. The spatial symmetry- 
breaking is thus not so effective for the Coulomb-hole healing in the HF approxi- 
mation. Then the spatial parts in Eqs. (2), (38) and (40) are reduced into the simple 
forms which involve one natural orbital. This leads frequently to the full magnetic 
ordering in the ground HF solution. The magnetically ordered ASDW solution is 
given by 

~la=~bi cos 2/2, ~tZA= q~j sin 2/2 (A=I ,  2 . . . .  p) 
(41) 

01a=02A=qSk ( A = 2 p + l , . . . )  

Similarly the magnetically ordered HSDW solution is given in the natural orbital 
form [2, 3, 7] as 

01A=q~ cos 2/2, O2A--~bj sin 2/2 (A= 1, 2 , . . . p )  
(42) 

0ta  = q~k, 02A= ~b~ (A=Zp+ 1 , . . . )  

There are various spatial symmetry-nonadapted ASDW (NASDW) [3] and 
HSDW (NHSDW) solutions with higher energies. The spatial parts of these 
solutions involve the various natural orbitals as shown in Eq. (2). 

5. Simple Extended Hartree-Fock Wavefunctions 

The present results indicate that the extended HF wavefunction can be con- 
structed by any orbital set if the necessary projections are performed [4, 10-19, 
24-26] before the SCF procedure: 

r (S, M )  = ~space ~alter ~spin ~H (43) 

where ~space is the projection operator relating with the spatial symmetry pro- 
jection. We also utilize the variational parameters coming from the spin degeneracy 
in the spin-optimized SCF scheme [13-19] in contrast to the PHF scheme [16, 30]. 

Generally speaking, the more symmetry-breaking orbitals are the more useful to 
incorporate the dynamical correlation effects in the extended Hartree-Fock 
scheme because of the variational principle. Then the spatial-symmetry non- 
adapted orbitals are important to incorporate dynamical correlation effects as 
much as possible on the basis of the EHF scheme. The spatial-symmetry breakings, 
however, lead to the non-orthogonality of trial orbitals in many cases. The non- 
orthogonality makes the construction of determinantal matrix elements much 
more time-consuming than orthogonal orbital set. This is likely to cause serious 
trouble if the method is to be used for large systems. Then the ortho-normalized 
spinors are utilized in the present EHF calculations. 
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The other problem lies in the fact that simple criterions to select the effective 
variational parameters are not presented in the case of the EHF method. For this 
purpose one can conveniently use the results of the stability analyses of the HF  
solutions. In fact, the eigenvectors belonging to the lowest roots of the stability 
conditions directly suggest the form of the orbitals to be used. The previous 
stability analyses [2, 3] indicate that the ground HF  solutions change as: RHF --, 
A S D W - *  H S D W - *  HSW, according to the complexity of correlation effects 
where the helical spin wave (HSW) has no symmetry property concerning spin 
density. Thus the ground HF solutions are closely related to the modulations of 
spin density as can be recognized in Eqs. (34) and (36). Then it seems useful enough 
to construct the relatively simple EHF wavefunction from the HF-like orbital set 
for applications to molecular calculations as shown in Table 1. The present EHF 

Table 1. Interrelationships between various effective Hamiltonians 

Classical Heisenberg model Hartree Fock Pro jec ted  Spin-optimized 
(spin arrangement) ( H F )  Hartree-Fock (PHF) SCF (SO SCF) 

Axial (one dimension) ASDW ASDW PHF ASDW SO SCF 
Planar (two dimension) HSDW HSDW PHF HSDW SO SCF 
Random (three dimension) HSW HSW PHF HSW SO SCF 

scheme is a direct extension of the HF method which has a wrong spin property 
[2, 3, 7]. Although the dynamical correlation cannot be incorporated by using the 
HF-type magnetically ordered spinors, the method, however, can sufficiently 
incorporate the static (non-dynamical) correlations coming from the orbital and 
spin degeneracies which play an essential role to determine the chemical behaviours 
of reacting molecules, i.e., the mechanisms of chemical reactions. In the present 
paper we discuss the simple two- and three-electron systems as illustrations. 

5.1. Homopolar Two-Center Two-Electron System 

The homopolar two-center two-electron system is first examined. The natural 
orbitals are given by the orthogonalized atomic orbitals (OAO) as 

q~_+ t = I / ~ ( Z l  •  (44) 

where the signs + and - denote the bonding and antibonding orbitals, respect- 
ively. The spin- and time-reversal symmetry breaking occupied MO's are given, 
respectively, by 

~,+ =~b 1 cos )o/2r/• +~b_ 1 sin 2/2q_ v (45) 

~+ =(q51 cos 2 /2+ i~b  t sin 2/2)q+ 

The S x modulate ASDW [2, 3, 7] and complex charge-density wave (CCDW) 
solutions [22, 23] are given by the above orbitals as 

r Of[=Dtl,bl ~,l+ Dz/2{[4,, 4,_l[+14,, Co_,l}-D3l~, ,~_ d (46) 

r lf}--D310-,~-,[ (47) 
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where 

D 1= 1/2(1+cos 2), D2=sin 2 and D3= 1/2(1-cos  4) (48) 

These solutions are reduced to the restricted HF solution when 2 = 0. The normal- 
ized energies of these solutions are given on the basis of the Hubbard-like para- 
metrization as : 

EASDW = -- 2X + 1/2 (X >~ 0.5) and - 2x 2 (x < 0.5) (49) 

~;CCDW = - 2 x +  1/2 (X ~> 0.25) and - 4 x 2 +  1/4(x<0.25) (50) 

where 

x =  (Sl) 

Functional dependences of the normalized energies on x are depicted in Fig. 1. 

0,5 

0,0 

-0,5 

-i,0 

-1,5 

i t ' ~ X 

O ~  0,6 Q,8 1,0 

]EAsDw 

Fig. 1. Functionaldependences of the total energies 
of the ASDW, CCDW and extended HF (EHF) 
solutions of homopolar two-center two-electron 
system on x 

As is apparent from Eq. (45), the CCDW solution satisfies the spin symmetry but 
breaks the time-reversal symmetry. Fig. 1 shows that the CCDW solution gives the 
lower energy than the RHF solution in the molecular-orbital crossing region since 
the Coulomb repulsion between biradical electrons is removed by the doubly 
excited configuration introduced by the coupling of the singlet monoexcitations. 
However, since the singlet mono-excitation energy is larger than that of the triplet 
one, the CCDW solution is higher in energy than the spin-density wave (SDW) 
solution involving the triplet mono-excitation [23]. This is compatible with the fact 
that the triplet instability precedes the singlet instability breaking the time-reversal 
symmetry [31]. Fig. 1 clearly shows that the ASDW solution gives the reliable 
potential surface in the dissociation region (x ~-0). The CCDW solution, on the 
other hand, gives 1/4 ~ at x = 0, indicating the wrong behaviour at the dissociation 
limit. Thus the spin-symmetry breaking procedure is very important in order to 
incorporate the static correlation effect coming from the orbital degeneracy in the 
case of the HF method. 
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The spin- and time-reversal symmetry projected solutions are given by 

(~u(0, 0)-~-~spin @s+ ~ -  = ~ti+me ~,+ @t - =N{Dtl~t~l[-D3[~_t~p_tl } (52) 

where N is the normalizing factor. Thus the projected HF solutions have the same 
full CI form in the present simple case. Then the spin- and time-reversal symmetry 
breaking procedures play the same role to heal the Coulomb repulsion in the 
extended HF  scheme. This implies that the symmetry-breaking modes to in- 
corporate the correlation effects are not uniquely determined in the minimal basis 
approximation. Functional dependences of the variational parameter on x are 
depicted in Fig. 2. As is apparent from Fig. 2, the ASDW solution is a good trial 

Fig. 2. Variations of the orbital mixing para- 
meters of the ASDW, CCDW and EHF solutions 
of the homopolar two-center two-electron system 
with x 

?, 

100 ~ 

~o 

~o 

20~ 

0 ~ ' ' ' ~ x  

O,O 0,2 0,4 0,6 0,8 1,O 

orbital set for the EHF calculation at small x-region. The potential surface of the 
ASDW solution is also similar to that of the EHF solution. Thus the present result 
indicates the utility of  the ASDW-type spin-symmetry breaking orbital set as a 
trial set of  the EHF calculation. 

5.2. Linear Symmetric Three-Center Three-Electron L (3,3) System 

Next, let us consider the linear symmetric (3,3) system with C2,, symmetry as 
shown in Fig. 3a. The natural orbitals are given by the OAO basis as 

(53) 

where ~b~t and qS~ has A t and B 2 symmetries, respectively. The ground HI 
solution is given by the ASDW form [3] as 

~ 1 = (,bzt cos 2/2t/e + ~b l_ 1 sin 2/2t/_ v (54 

~ot = ~b o, 1/xf2 (r/+ +1/_) 
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Table 2. Transformation properties of 
E (C2z)' (or) '  o~ the M~-modulate axial spin density 

wave (ASDW) orbitals with re 'm2'  
~l 1 ~9~ - i ~  t- 1 ~;~ - i~bL 1 symmetry for the linear H 3 radical and 
~d_ t ~O t_ ~ - iOtl ~ [ ~ - i~9~ the M -modulate helical SDW (HSDW) 
~k~o ~ i~O~ - ~  - i 0 ~  orbitals with 2' symmetry for the equi- 
P;  01 01 * * lateral H 3 radical" 
0'-1 q/'-1 - 0 ' - 1  * * 

0;  0;  0o * * 

a t = time reversion: iaa, aU. 

i 3 i / 

v A B(~'2') C(2') 

Fig. 3. Symmetry axes (A), and 
spin structures (B and C) of the 
linear symmetric and equilateral 
H 3 radicals, respectively 

This orbital set has the re'm2' magnetic symmetry [1] as shown in Table 2 and 
Fig. 3b. The normalized energy of the ASDW solution is given on the basis of the 
Hubbard-like model as 

EASDW = -- 2X~ X COS 2 + �88 (1 -- sin 2) + 3/8 cos22 (55) 

where the energy of the R H F  solution corresponds to the case where 2 = 0. Func- 
tional dependences of the energies on x are depicted in Fig. 4. Fig. 4 shows that the 
ASDW solution gives the reliable potential surface even in the dissociation limit. 

The 5P z projected ASDW wavefunction is given by 

(b(1/2) = ~ ~1 ff~-i O~ = ~bl O1 + ~b2 02 + ~b3 03 (56) 

where 

~ i  = dl ~b~l(1) q~zl(2) q5~(3), 

d 1 = 1/2 xf2 (1 +cos  2) 

~2 = 4 ~(1)  q~L 1(2) qg(3), 
d 2 = 1/2 x/2 sin 2 

433 = d 3 q~L 1(1) gbL 1(2) q5~(3), 

d 3 = 1/2 x/2 (1 - c o s  2) 

O 1 = q +(1)rt_ (2)tt + (3), 

Oz = t/+ (1)q + (2)t/_ (3), 

O3 = ~_ (1)~t + (2)t/+ (3), 

(57) 
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Fig. 4. Functional dependences of 
the total energies of the ASDW SO 
SCF and spin-projected ASDW solu- 
tions of the linear symmetric H 3 
radical on x as those of various HF 
solutions 
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The 5 ~ Z-projection is performed by using the unitary matric basis as 

= d q~ (1) ~bZl(2) qSg (3) [ C 1 / 6  (201  - I -203 - 01  - 02  - 03  - 0 2 )  

+C2/6 (201-203 +01+02-03-02)] 
=dl C2 ~G 

(58) 

where d is the antisymmetrizer and the ground configuration is given by ~b G = 
[qS] ~b] q~]. Other terms are similarly given by 

~r e~2i 1] q~ z 02  = - d 2 / 3  r 

d e [ l ~  ' 111~3 ~93 = 0 

d e[22~ 11 ~2 02  = 0 

de[2~ 1]~ 3 0 3 = - d  3 ~ 
(59) 

where ~c~ and ~bE~ denote the spin-polarization and doubly excited configurations 
as 
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Thus the spin-symmetry adapted ASDW solution is given by 

(1/2, 1/2) = ~spin (~/1 (~l-1 q~/= D t q~G H- D 2 ~cfl -F D 3 ~E7 (61) 

where the weights of the configurations are given by using the normalizing factor N 
a s  

D , = W  d 1 C2, D e = - x ~ W d 2  C , ,  D 3 = - W d  3 C 2 (62) 

The spatial and alternancy symmetry projections are not necessary since the above 
solution has the 2B 2 symmetry. The ASDW SO SCF wavefunction is equivalent to 
the full CI wavefunction in a minimal basis approximation when the spin-sym- 
metry breaking (2) and spin-coupling (co) parameters are determined variationally 
where the latter is defined by 

a = t a n -  1 co, co=C1/C z (63) 

The normalized total energy is given by 

L~nv (L) = -2~/-2 x (DZ~-DZ)+~+3DID2+~-~ (DtDz-DzD3) (64) 

Figure 5 illustrates how the total energy changes with variations of the 2- and co- 
parameters, assuming that x =  0.5. Then L6wdin's PHF solution corresponds to 
the case where co = 1.0. As is apparent from Fig. 5, the SO SCF wavefunction gives 
the local minimum in the hypersurface. The optimized 2- and co-parameters for 

(ID LU~]AL MINIMUM 

Fig. 5. Interrelationships among the energies of the spin-projected HF (SP-HF), projected HF (PHF) 
and spin-optimized SCF (SO-SCF) solutions of the linear symmetric H 3 radical on the basis of the 
Hubbard-like model at x = 0.5 
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Fig. 6. Variations of the orbital mixing 2 and spin- 
coupling a parameters with x in the case of the 
ASDW SO SCF calculation of the linear sym- 
metric H 3 radical. The 2-values of the ASDW 
solution are illustrated by the dotted line 
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varying x-values are illustrated in Fig. 6. Functional dependences of the total 
energies of the ASDW SO SCF and spin-projected ASDW solutions on x are also 
depicted in Fig. 4 as those of the HF solutions [3]. Figures 4-6 show that the ASDW 
solution is a good trial set for the SCF calculation and the spin-projected ASDW 
wavefunction gives a good energy surface. 

The full CI wavefunction of the linear symmetric (3,3) system can be given by the 
spatial (v) and spin (2) symmetry breaking parameters in the case of the projected 
HF (PHF) calculation by Laforge, Ci~ek and Paldus [26] as 

E(~, �89 ~spaceNsvi. 010-10o  (65) 

where 

~9+ =cos 2/2{(1 -a)Ol+bc~o-aC~_ 1}tl• 
+sin 2/2{-aq~ 1 +b~b0 +(1 -a)~b_ 1 } t/_= 

~9 o = { - b~b 1 + (1 - 2a) q~o - b~b_l } 1/x~ (t/+ + ,  _ ) (66) 

a=�89 - c o s  v), b=  1/2 sin v 

The spatial part of the trial function in the above approach has not the full sym- 
metry of the C2~ group. Then their orbital set is referred to as the spatially symmetry 
non-adapted ASDW (NASDW) solution [3]. The spatial-symmetry projection is 
necessary to obtain the B 2 symmetry in this case. The above examples indicate that 
the NASDW PHF wavefunction is equivalent to that of the ASDW SO SCF 
method in the linear symmetric (3,3) system. 

The mode of symmetry breaking to incorporate the correlation effects is, thus, not 
unique in the EHF scheme in the minimal basis approximation. In fact there are 
four different combinations in the case of the linear symmetric H 3 radical [26], i.e., 
(I) spatial plus spin symmetry breaking, (II) spin plus alternancy symmetry 
breaking, (III) spatial plus alternancy symmetry breaking, and (IV) spin-symmetry 
breaking plus spin-coupling variation, In the case of set (I), the spin-symmetry 
breaking parameter in the EHF calculation is considerably different from that of 
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the ASDW solution. This implies that the ASDW solution cannot be utilized for 
the trial orbital set for the EHF calculation of the type (I). The last combination 
(IV) used in the present calculation, on the other hand, indicates the utility of the 
ASDW solution. 

5.3. Hiickel Three-Center Three-Electron H (3,3) System 

The ground HF solution of the Htickel (3,3) system is given by the helical spin 
density wave (HSDW) orbitals which are defined by using the real natural orbitals 
as 

r =(cos 2/2 ~b h + l/x/-2 sin 2/2 ~b h_ ~)r/+ + l/x/-2 sin 2/2 ~b~ t/_ (67) 

r  =(cos 2/2 ~b] - 1/x/~ sin 2/2 ~b h_ t)t/_ + 1/xf2 sin 2/2 ~b~ r/+ 

0o= 1/x/~ (~b~q+ +q~h_ tt/_ ) 

where 

h ' 0 ) ~ X 2 )  

\ 0  h_~/ \ 1 1 - - 2 / \ Z 3 /  

(68) 

This orbital set has the 2' magnetic symmetry as shown in Table 2 and Fig. 3c. 
The normalized energy of the HSDW solution is given on the basis of the Hubbard- 
like model as 

/~nsDw (H) = - 3x cos 2 + 1/3 (2 - sin 2 - sin 2 2) (69) 

where the energy of the RHF solution corresponds to the case 2 = 0. Functional 
dependences of the energies on x are depicted in Fig. 7. Fig. 7 shows that the 
HSDW solution gives the reliable potential surface even in the dissociation limit. 

The S z projected HSDW wavefunction is given by 

�9 ~ ( 1 / 2 ) = ~  ,/,' ,/, . . . .  ~ , r  (70) 

where the spin function O i are the same in Eq. (57) and the spatial parts are given by 

r s h 1 h 2 h 3 h 1 h t~b-x( )q~l( )q~o( ) -~bl(  )q~-x(2)~b~(3)} 

- 1/2 d 3 q~h ~ (1) q~h_l (2) q~)(3) (71) 

~'2 = 1/X/'2 d2 Oh (1) q~h o (2) q~h_~ (3) + �89 d 3 q~h_~ (1) q~ (2) ~bh_a (3) 

! __1 ~3 - 5 d3 ff~ (1) q~ (2) q~ (3) 

The ,9~2-projections are performed similarly as shown in Eqs. (58) and (59), and 
results are as follows: 

~ 2 ~ b , l ( ~ l m _ d l C 2 ~ b ,  _ l / x ~  , 1 G ~C/~--~ d3 C2 ~E~ 

t f l  t 2 ~Cct J 2 C1 Ect ~ # ~ 2 0 2  = - d 2 C  1 t2x/~Oca+ • ~ - •  d 3 q~' (72) 

~i~z I ~  0 3 = 0 
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Fig. 7. Functional dependences of  
the total energies of  the H S D W  SO 
SCF and spin-projected H S D W  
solution of  the equilateral H 3 radical 
on x as those of  various H F  
solutions 
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where the configurations are similarly defined as in the case of the linear H 3 
radical by replacing qStf with ~b~. These configurations are schematically illustrated 
in Fig. 8. The spin-symmetry projected HSDW wavefunction is given by 

~n(�89 �89 ~G+D2{x~/2 ' 1 . . . .  ' ' ' ~bc# -1- 2 (ibc~ } - -  D 3 (ibE~ (73) 

where the CI coefficients D[ and the singlet mono-excited configuration ~bc~ are 
given, respectively, by 

D[ =N'd, C2, D; =N'd z C1, D; =N'I(c1 + C2)d 3 

(N' : normalizing factor) (74) 

~bc, = l/x/~ {l~b ] ~h,  qSh [__ ]~  ~h_l ~h[} (75) 

The above wavefunction (72) has the 2B 2 symmetry. The wavefunction with the 
2A 1 symmetry, on the other hand, can be obtained in a similar manner as follows: 

I 1 , t t 

=Dl~bb+D z 1 ) -D3  ~b a 
(76) 

where t is the time-reversal operation and the weights D[ are defined by Eq. (74). 
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Fig. 8. The g round  and excited doub le t  
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orbi ta ls  of  the equi la te ra l  H 3 radical .  The  

no ta t ions  of  the conf igura t ions  are given in 

the text  

The configurations with 2 A  1 symmetry are given by 

where ~b, and ~b b, ~d and ~bE~ are the mono-excited (internal), semi-internal and 
doubly excited (external) configurations [32], respectively, assuming that the 
ground configuration is given by Iq~]@ h q~h l. They are schematically illustrated 
in Fig. 8. 

The = B  2 and 2A 1 s t a t e s  are degenerate in energy at the D3h conformation, compat- 
ible with the 2E' state of the equilateral H 3 radical. The wavefunction with 2E' 
symmetry is given by the complex molecular orbitals [4] as 

IJ) /,_11 1~ / ,2  , __ h h u ,2 ,2 , ,  E )--~spln@l~t_t@h----1/~V/2{ 1 1 ~(~,2)(2A1) +iqbut 2,2'~/,• • 2B2 )} 
--h h t h h --h t h --h h = D;14  414ol +D214  4-e4-el + D314er162 J (78) 

where the complex molecular orbitals are given [4] by 

q~h= _ 1/V/-~ (q~h t T i~b h) (79) 

Thus the present results indicate that the spatial symmetry projections are not 
necessary if the magnetically ordered spinors are utilized as trial orbitals for the 
extended HF (EHF) calculations in the case of the H(3,3) radical. This property is 
very important since the surface crossing between two states with different spatial 
symmetries can be correctly described in the present EHF scheme in contrast to 
the HF scheme [2, 3]. Thus the present results suggest the utility of the magnetically 
ordered spinors in the EHF approach. 

The HSDW SO SCF wavefunction is equivalent to the full CI wavefunction in a 
minimal basis approximation when the spin-symmetry breaking (2) and spin- 
coupling (co) parameters defined by Eq. (63) are determined variationally. The 
normalized total energy is given by 

E I ~ H F ( H )  = ' 2 ' 2 2 . . . . . .  - 3 x ( D ~  - D  3 ) + 5 ( 1 - D t D 2 - D 2 D 3 - D 3 D t )  ( 8 0 )  

Figure 9 illustrates how the total energy changes with variations of the 2- and co- 
parameters, assuming that x = 0.5, As is apparent from Fig. 9, the SO SCF wave- 
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Fig. 9. Interrelationships among the energies of the spin projected HF (SP-HF), projected HF (PHF) 
and spin-optimized SCF (SO SCF) solutions of the equilateral H 3 radical on the basis of the Hubbard- 
like model at x=0.5 
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spin-projected H S D W  wavefunct ion gives a good  energy surface. Thus the present 
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radical. The 2-values of the HSDW solution are 
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5.4. M6bius Three-Center Three-Electron M(3,3) System 

The natural orbitals of  the M6bius (3,3) system can be easily obtained by the spatial 
symmetry as 

4 r e  = /~ - l c  2 - (t~=e =i/3) (81) 

~m 1 - -  1 )/3 

The ground HF  solution of the M6bius (3,3) system is given by the HSDW 
orbital as the Hfickel (3,3) system [4]. 

0~ 1 = cos 2/2 ~ + t / +  + sin 2/2 4t i ~ ~ (82) 

m--1 2 " m 

The EHF  wavefunction of  the pure doublet state can be easily obtained as 

1 1 ~ ~ltm jltrn m 
~ ) M ( 2 ' 2 )  = spin ~t" 1 " / ' -  1 ~/0 (83)  

I I + D; 1J + 
where Dj is given by Eq. (74). The normalized total energy of the M(3,3) system is 
equivalent to that of  the H(3,3) system in both the HF and EHF cases. 

ElfSD w ( H )  = EHSDW (M),/~nV (H) ~ '  . =EEHv(M ) (84) 

Since the same situations as those of the H(3,3) system appear in the case of the 
M(3,3) system, there is no need to repeat them here. 

6. Energy Foundations of the Selection Rules of Free Radical Reactions 

The linear, Hfickel and M6bius conformations of  homopolar  systems have been 
utilized as the models of  transition states of  organic reactions. The Hfickel MO 
approaches have been extensively performed to evaluate the resonance energies o f  
the systems. However the more general approaches such as H F  and EHF methods 
have not been performed to elucidate the relative stabilities among them. The three- 
center three-electron (3,3) system is one of  the most simple systems where the 
E HF  and HF wavefunctions can be obtained by using the Hubbard-like para- 
metrization as shown in the preceding section. Then it seems important and 
interesting to examine the foundations of the selection rules based on the orbital- 
and permutation (spin)-symmetry conservation criteria [1-3] from the relative 
stabilities of  the transition states in the case of  the system. Figure 11 illustrates the 
variations of  the electronic energies of the linear and cyclic (Hfickel or M6bius) 
systems on x. 

Figure 11 shows that the R H F  energy lines for linear and cyclic conformations 
cross at x = 0.265. The energy lines of  the HF  solutions, on the other hand, do not 
cross, compatible with the EHF  results which are equivalent to those of  the full CI 
approaches in this case. Thus the same results are derived from the HF and EH F  
methods. This fact is very important since the construction of  the EHF wave- 
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functions is very difficult in the case of many-electron systems and HF solutions are 
alternately utilized in many cases. The present results also indicate that one can 
hardly derive the reliable stability-instability relationship unless the correlation 
effect is taken into account in the small x-region, i.e., weak resonance interaction 
region. The RHF solution, on the other hand, gives the reliable result in the strong 
resonance interaction region: x>  0.5. Thus Hfickel and RHF solutions can be 
utilized to examine the relative stabilities of considerably stable free radicals. 

The Hfickel and M6bius (3,3) systems are only a little more stable in the electronic 
energy than the linear one in contrast to the even electron systems [1]. The nuclear 
repulsion term may cancel the excess stabilization energy of the cyclic conforma- 
tion. For example, it has already been shown that the linear conformation is more 
stable than the Hfickel one in the case of the Hs radical [2]. It is also noteworthy 
that the effective exchange interaction J in the Heisenberg model involves the 
nuclear repulsion terms as the exchange interaction of the VB model of H 2 
molecule by Heitler-London. The model can correctly predict the greater stability 
of the linear form [1, 33]. 

The correlation and spin correlation effects incorporated by the various wave- 
functions obtained in the present paper can be analyzed systematically on the basis 
of the pair and spin correlation functions. They will be discussed in relation to the 
MO and VB selection rules in the succeeding paper. 

7. Concluding Remarks 

The results presented here are summarized as 1) the spin-symmetry adapted wave- 
function can be constructed from the Hartree-Fock type orbital set by using the 
permutation operator and it satisfies Wigner's theorem, 2) there are axial (ASDW), 
planar (HSDW) and random (HSW) spin arrangements in the trial orbital sets of 
the present extended Hartree-Fock scheme as the Hartree-Fock approach, and 
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3) one of the ground EHF wavefunctions can be obtained by use of the magnetically 
ordered set which is similar to that of the ground HF solution, indicating the 
utility of the magnetic double point group. 

The merit of the present EHF scheme lies in the group-theoretical approach which 
can clarify the interrelationships among the Heisenberg model, Hartree-Fock and 
simple extended HF methods [-4]. The present method will be used to investigate 
the chemical reaction mechanisms in the case of the ground states of organic 
molecules as the three-center three-electron systems discussed in the present paper. 
The application of the present method to the four-electron systems are easy. This 
will be shown elsewhere [34]. 
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